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supported by the oscillation picture showing 500 and 
500 in Fig. 13. 

No attempt will be made in this paper to give a full 
theoretical interpretation of the various diffraction 
phenomena. Obviously this is impossible as long as the 
correct diffraction condition has not been realized, 
which can only be done either by changing the wave- 
length of the monochromatic radiation (valid in the 
cases of multiple diffraction 1-]-,0,2, "703, 804, 304), or 
by varying the lattice constants (to be done for 500, 
802). Consequently, completely new equipment is 
needed. On the other hand, it will be advisable to use 
strictly monochromatized and polarized radiation in 
order to simplify the influence of polarization, which 
has not been discussed here since it is unnecessary in 
those cases where the reflections involved belong to the 
same zone and all waves have the same plane of 
incidence. 

Unfortunately, the indices of some of the planes 
relevant to secondary reflections are most probably 
incorrect in the previous short communication (Jagod- 
zinski, 1978), since their intensities could not be 
checked on account of the data available. This 
difficulty arises from the inaccuracy of the diffraction 
condition for reflections on other but the zero layer line, 
because of the large horizontal and vertical angles of 
aperture. This problem has to be solved with the aid of 
more precise diffraction geometry. 

The author thanks the Deutsche Forschungs- 
gemeinschaft for generously supplying X-ray equip- 
ment. Technical assistance in taking and evaluating 
diffraction pictures by Mrs Oppermann and Mrs 
Schmidt, and reproduction of magnified copies of X- 
ray patterns by Mr Gappa are gratefully acknow- 
ledged. 
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Abstract 

The concept of disorientation, previously used for 
studying the statistical distribution of the relative 
orientation of identical cubic crystals, is defined in this 
work for any two lattices. Using the proposed 
definition, an algorithm is presented, allowing all the 
known relative orientations between the two lattices to 
be conveniently classed. As an example, a unified 
classification of the numerous mutual orientations of 
the A1 and CuA12 crystals is suggested. The unit 
quaternion method used by Grimmer [Acta Cryst. 
(1974), A30, 685-688] for identical cubic lattices is 
here proved efficient for discussing the pair axis/angle 
disorientations in more complicated cases: cubic 

0567-7394/80/010116-07501.00 

1/cubic 2; tetragonal 1/tetragonal 2; hexagonal 1/hex- 
agonal 2; cubic/tetragonal; cubic/orthorhombic and 
cubic/hexagonal. The general expressions of equivalent 
quaternions are given for any point group of lattice 1 or 
lattice 2. 

1. Introduction 

In a preceding paper, Bonnet & Cousineau (1977)pre- 
sented results concerning a numerical method used to 
find the relative orientations of two equal or different 
lattices 1 and 2, such that two small multiple cells M 1 
and M2 are coincident or near-coincident to within a 
small deformation. Their results were classified in 
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increasing order of the volumes of cells M1 and M2. 
The relative orientations given were those found by the 
numerical method. 

In this work a unique and convenient description of 
these relative orientations is suggested so as to compare 
rapidly results of different origins. Handscomb (1958), 
Mackensie (1958) and later Grimmer (1974) treated 
this problem for the special case of cubic lattices with 
the aid of the disorientation concept. In particular, 
they found by different ways that a rotation _<62.80 o 
is sufficient to superimpose two cubic lattices. Next, 
Warrington (1975) determined the standard stereo- 
graphic triangle for the two identical hexagonal lattices 
having point group 622. 

In this paper, the definition of the disorientation of a 
lattice 2 with respect to a fixed lattice 1 is extended to 
any system lattice 1/lattice 2. In accordance with this 
definition a computer program is proposed allowing the 
treatment of numerous data, for example the system 
A1/CuA12. Moreover, the method proposed by Grim- 
mer (1974) to treat the cubic cases is systematically 
used in the computer program to derive the possible 
quaternions related to any two lattices. This method 
allows an upper limit for the rotation angles represent- 
ing all the relative orientations between any two lattices 
to be determined. Results are presented for six different 
associations of cubic, tetragonal, hexagonal and ortho- 
rhombic lattices which are often encountered in 
practice. 

2. The definition of disorientation 

that the two lattices are differentiated. An elementary 
matrix calculation leads to the equivalent relative 
orientations of the new frame F2 with respect to the 
new frame F 1. They are obtained here by the matrices 
R u such that 

Rij= [Ai];J[RIF,[Bj] n, ( 2 )  

w h e r e  i = 1 , . . . ,  m ,  j = 1 . . . .  , n .  

Since these rotations are global invariant operators, 
their real eigenvalues may be referred to a fixed ortho- 
normal frame, here chosen to be F1 for simplicity. In 
F 1, the rotation angles are denoted 0 u and the direction 
cosines of the rotation axis ttij  , f lU' Yij" For all rotations 
R u the following relations are adopted by convention: 

- ~  < 0u _< zr t 
(3a) J Y~j > 0 

or, if 7u = 0 ,  aij > 0 } 
or, if 7 u = 0  and aij=O, f l i j = l j "  (3b) 

Taking (3a) and (3b) into account, the disorientation 
is uniquely defined by the rotation R u (direction cosines 

Data [ 

A i (i = 1,m)l 
Bj (j = 1,n)] 
a ,B,y,O ] 

I 

An orthonormal reference frame Fi(i = 1, 2) is attached 
to each lattice 1 and 2. Hereafter, lattice 1 is fixed in 
space. By convention its Bravais cell is more symmetric 
than that of lattice 2 when the two lattices are of 
different species. Initially F2 is superposed on F 1 (axes 
(Oxl,Oy,Ozl) ,  so that the two Bravais cells (vectors 
a i, b i, ci) are such that 

Oxl//ai (1) 

OZl//a i X bi, i=  1, 2. 

Lattice 2 is first rotated by an angle 0 around an axis 
whose direction cosines in F1 are denoted a, fl, 7. The 
corresponding rotation matrix in F1 is [RJvr This 
rotation describes, for instance, an experimental 
relative orientation of two crystal lattices. If the crystals 
are of different species this relative orientation is most 
often presented by the parallelism of lattice planes or 
lattice rows. 

Let us now suppose that the frames F1 and F2 are 
rotated by all lattice symmetry rotations of lattices 1 
and 2. These symmetry rotations are denoted by the 
matrices [Ai]FI (i = 1, . . . ,  m) and [Bj]F2 ( j  = 1,..., n), 
respectively. The product mn represents the number of 
possible descriptions of the same situation provided 

~ B Y i j '  0 

j l e  i j [  > ledl ' 

no ,p A yes 

Ud < u ! y e s  

Fig. 1. Algorithm defining disorientation. Simplified flow chart of 
the computer program. 
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ad = ai j ,  fld = fitS, Yd = ~)ij, rotation angle 0 d = Oij) 
having the following properties: 

(i) I Od I has the smallest possible value. 
(ii) Condition (i) being fulfilled, a d has the greatest 

possible value. 
(iii) Condition (ii) being fulfilled, fld has the greatest 

possible value. 
(iv) If conditions (i), (ii), (iii) are fulfilled for two 

rotations, the disorientation is that for which Od > O. 
(v) If the lattices are identical, lattices 1 and 2 can 

be interchanged. As a result Od is taken as I Odl. 
By using the above definition, a small computer 

program has been written in Fortran IV, the flow chart 
of which is presented in Fig. 1. The data can be 
introduced either by orientation relationships between 
lattice planes and lattice rows, or by rotation matrices 
[R]vl, or by components aO, flO, 70 of the rotation 
vector. 

3. A unified classification of the AI/CuAI 2 mutual 
orientations 

The above computer program has been applied to the 
system A1/CuA12 for which mutual orientations are 
numerous. Since the review of Bonnet & Durand 

(1972), several new mutual orientations have been 
observed (Bonnet, 1974; Kang & Laird, 1975). The 
latter concern mutual orientations of CuA12 pre- 
cipitates growing on the surface of a solid solution of 
copper in AI. 

Table 1 shows that all the disorientation angles are 
between - 5 2 . 7  and 58.0 °, the directions of the axes all 
being contained in the triangle [ 100], [110], [001] of the 
frame F 1 (Fig. 2). This property is demonstrated in the 

48.7 ~ 

\ 
• 39.1 • 

19.4• 34.9e 
O. J - -  21.8 e 39.6 

18.4 ~ e17,7 

Fig.  2. T h e  mutua l  or ientat ions  b e t w e e n  AI and C u A I  2 reported  as 
d isor ientat ions .  T h e  m a x i m u m  disor ientat ion  angle  is 58 ° . 

Table 1. The classification o f  the mutual orientations o f  Al  and CuA12 in terms of disorientations 

Equivalent orientation relationships to those reported in the literature. 

Disorientation Plane 1/Plane 2 Disorientation Plane 1/Plane 2 
angle Axis row l/row 2 References angle Axis row l/row 2 

0-712 1. 
-52.7 0-643 (111)//(211) Vaughan & Silcock (1967) 38.8 0. (001)//(011) 

0.280 [01 i l / /[ i20] Davies & Hellawell (1970) 0. [ 100l//11001 

0.615 0-546 (111)//(211) 
-45.6 0-297 (02i)//(211) Vaughan & Silcock (1967) 39.1 0.200 

0.731 I | i 2 l / / [ | l l l  0.814 [ i01] / / [ i l l ]  

0.857 0.714 (1 i 1)//(1 i0) (131) // (011) 
-35.3 0-700 Vaughan & Silcock (1967) 39.6 0.049 

0-003 [21 i ] / / [ l l i l  0.513 [ i 0 1 l / / [ i l l l  

0.342 0. 
-32.9 0.196 (001)//(1 i5) Kang & Laird (1975) 45. 0. (001)//(001) 

0.919 [iI01//[41II I. [0101//Ill01 

0.296 0.664 
-21.8 0.138 (1 i l ) / / ( 2 i l )  (1 i2)//(001) 

0-945 [01 I1//[i351 Bonnet & Durand (1972) 46.9 0.372 
0.649 l l31] / / l l l0 l  

0 / (001)//(001) Ellwood & Bagley (1949) 0-939 
[lO0l//[lOOl 47.6 0.317 (011)//(010) 

I l l i l / / [ 1 0 i l  
0.398 ( i l  1)//([21) Davies & Hellawell (1970) 0-131 

17-7 0-046 0.707 
0.916 [01 il//[ 135] Bonnet & Durand (1972) 48.7 0.707 (001)//(i 11) 

I l l01// l l l01 
0. 0. 

18.4 0. (001)//(001) Mehl, Barrett & Rhines (1932) 0.695 
1- [3101//[1001 Guinier (1942) 53.8 0.239 (001)//(011) 

[010 l / / l l l i l  
0-259 (i 11)//(i21) Kraft & Albright (1962) 0.678 

19.4 0.187 0.707 
0.948 [1101//[210] Davies & Hellawell (1970) 54.7 0-707 (i 12)//(i 10) 

[l i11//[0011 
0-736 0. 

29.7 0.677 (111)//(121) 
0.011 [1 i01//[ 1 [ 11 Lawson, Kerr & Lewis (1972) 56.6 0.2440"590 (l i2)//(001) 

[ 1101//11001 
0.518 0.769 

34.9 0.154 (111)//(211) 
0.842 [01 i l / / I  1131 Bonnet & Durand (1972) 0.612 

58.0 0.314 (111)//(211) 
0.726 [il01//[01iI 

References 

Heimendahl & Wassermann (1962) 
Vaughan & Silcock (1967) 

Davies & Hellawell ( 1970) 
Bonnet (1974) 

Vaughan & Silcock (1967) 

Guinier (1942) 
Takahashi (1960) 

Kang & Laird (1975) 

Bonnet (1974) 

Kang & Laird (1975) 

Vaughan & Silcock (1967) 

Kang & Laird (1975) 

Kang & Laird (1975) 

Davies & Hellawell (1970) 
Proulx (1973) 
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example of § 4.4. The new orientation relationships in 
column 3 of Table 1 are equivalent to those reported in 
the literature but are classified according to the dis- 
orientation definition. 

4. Discussion on disorientation for any lattice 1/lattice 
2. Examples 

In order to discuss the disorientations between two 
identical cubic lattices, Grimmer (1974) used an 
elegant method requiring the properties of unit quater- 
nions related to lattice rotations, in particular the multi- 
plication law of unit quaternions (Du Val, 1964). This 
method has proved to be efficient in discussing the dis- 
orientation angle limits even in the more complicated 
cases treated here. In the following paragraph, a small 
number of typical expressions are derived for the unit 
quaternions representing all the equivalent rotations 
described above by (2). 

4.1. Typical expressions of unit quaternions 

Let us consider any two lattices, each having an 
initial orientation described by (1). Here, no rhombo- 

hedral Bravais cells are used in order to write simply 
the quaternions related to symmetry rotations [Ai]r~ 
and [Bj]r2. Then, let us rotate lattice 2 by [R]F~, the 
corresponding unit quaternion of which is denoted 
(ao,al,a2,a3), with 

a 0 = cos 0/2, a~ = a sin 0/2, 

a2 = fl sin 0/2, a 3 = a sin 0/2. 

Combining two by two the symmetry elements of the 
two lattices by using the multiplication law of unit 
quaternions leads to the expressions for m x n 
equivalent quaternions. Their elements, linear functions 
of a 0, a~, a 2, a 3, are obtained by a small computer 
program. A careful observation of the listing provides 
all the typical expressions representing the m x n 
quaternions. Table 2 groups 24 typical expressions 
derived for the cases : cubic 1 (432)/cubic 2 (432) - 
expressions (5.1) to (5.6); hexagonal 1 (622)/hexagonal 
2 (622) - expressions (5.1) and (5.7) to (5.14); and 
cubic (432)/hexagonal (622) - all expressions except 
(5.8) and (5.10) to (5.14). They are also available for 
any other combination of lattice 1/lattice 2 as shown in 
Table 3 because they also represent all the other corn- 

Table 2. Typical expressions of unit quaternions for any lattice 1~lattice 2 
(a  o ,  a 1,  a 2 ,  a 3) 

2 - 1 / 2 ( %  + a 1,  a 1 - a o ,  a 2 + a 3 ,  a 3 - a 2 )  

2-1/2(% + a 2, a I - a 3, a 2 - ao, a I + a 3) 

2 - i / 2 (%  + a 3, a I + a 2, a 2 - a I ,  a 3 - ao) 

2 - I  (% + a I + a 2 + a 3, a I + a 2 - a o - a 3, a 2 + a 3 - a o - a I ,  a I + a 3 - a o - a2) 

2 - I  (a ° - a I - a 2 - a 3, a 2 - a o - a I - a 3, a 3 - a o - a I - a2, a o + a 2 + a 3 - a l )  

2 -1 (% + a3¢3, a2J3 - a I ,  -a l /3  - a 2, a 3 - %¢3) 

2 -1 (a ° - a3J3 , a2J3 - a l ,  -ai¢3 - a 2, a 3 + aoV3) 

2 -1 (a 3 + aoJ3, a 2 - ai¢3 , -a I -a2J3, a3¢3 - %) 

2 - I  (a 3 - aoJ3 , a 2 - aiJ3 , -a I -a2J3, -a3J3 - %) 

2 - I  (2%, a I + a2/3, a 2 - a i /3 ,  2a3) 

2 - I  (a ° + a3¢3, -2a 1, -2a 2, a 3 - aoJ3 ) 

2 - I  (aoJ3 + a 3, 2a 2, -2a 1, -2% + a3J3 ) 

2 - I  (2%, a2J3 - a I ,  -ai¢3 - a 2, 2a3) 

8-1/2(ao~3+a1/3+ a2-a3,-aoV3 + al /3 + a 2 + a 3, a o- a 1+ a2J3 + a3¢3, ao + a I - a2¢3 + a3J3) 

8-1/2(ao¢3+a1 +a2/3+a3,-a o - a l / 3 + a  2+a3¢3,-ao/3+a 1+a2 /3 -a  3, a o - a l / 3 + a  2-a3¢3 ) 

8-1/2(ao~3+ aiJ3 - a 2 + a3,-aoJ3+ alJ3 - a2-a3, a o- a I - a2¢3- a3/3, ao+ a I + a2,/3- a3¢3 ) 

8-1/2(a o + ai¢3 + a 2 + a3¢3, %,/3+ a I -a2¢3- a3,-a o + ai /3 + a 2 - a3¢3,-aoJ3+ a I -a2¢3 + a3) 

2 I /2 (pa o + qa 3, qa I + pa 2, - pa I + qa 2, -qa o + pa 3) 

21/2 (pa I 

p(a o + a2) 

p(a I + a 3) 

P(a o + a I )  

p(a 2 - a3) 

+ qa 2, - qa o - pa 3, Pa o- qa 3, -qa I + pa 2) 

+ q(a I + a3), P(a 2 -a o) + q(a I - a3), P(a 3 -a I )  + q(a 2-  ao), P(a I + a 3) + q(-a o - a2) 

+q(a o+a2) ,p (a  3-a 1)+q(a o - a 2 ) , p ( a  2-ao)+q(a 3 - a l ) ,  P(a o+a 2)+q( -a  l - a 3 )  

+q(a 2 - a 3 ) , p ( a 2 + a 3 ) + q ( a o - a l ) ,  P(a 1 - % ) + q ( a 2 + a 3 ) , p ( a  2-a 3)+q( -a  o - a  I)  

+q(a O + a l ) , p ( a  o-a l )+q(a2+a3),  P(a 2+a 3)+q(a l - a o ) , p ( - % - a  l ) + q ( a  2 -a3)  

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.zo) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.2o) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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binations of point groups [At], [B j]. For the last six 
expressions, the values p and q are (v/3 + 1)/4 and (v/3 
- 1)/4, respectively. 

The problem is now to describe, from these typical 
expressions, all the set of m x n equivalent quaternions. 
Let us denote more generally (ao,al,a2,aa) one of the 24 
typical expressions of Table 2. Arbitrary permutations 
and sign changes of the four elements define a set of 
unit quaternions for which the general expression is* 

( eta i, ejaj, eka k, ela l) , (4) 

where e t, ej, e k, /~l = -+ 1, the subscripts i, j ,  k, l being 
any number among 0, 1, 2, 3. Depending on the 
combination of the point groups [Ai], [Bj], the number 
of permutations and sign changes representing the 
equivalent rotations [qu are determined by two 
rules.These rules are presented in Table 4 for the above 
six examples with the aid of parameters defined below. 

* In this expression, there is no summation over terms of the form 
el at. 

Table 3. Lattice 1~lattice 2 combinations related to 
quaternions of  Table 2 

e 2 cubic 

cubic X 

tetragonal 

orthorhombic 

hexagonal 

monoclinic 

t r i c l i n i c  

tetragonal orthorhombic 

X X 

X X 

hexagonal monoclinic t r i c l i n i c  

x 

x 

x 

X 

x 

I × 

Table 4. Expressions o f  the permutation and sign rules 
applying to the typical expressions listed in Table 2 

The point groups of the lattices are in brackets in the first column. 

lat t ice i / la t t i ce  2 typical expressions )ermutation rule 

cubic I/cubic 2 
5 .1  to  5 .6  J (432)i(432) 

tetrag.i / tetrag.2 
5.1 and 5.4 i + ~ = 3 C4e2)I(422) 

sign rule 

1 i 
• iEjekC~=(" ) ejk ~ 

hexag I/hexag 2 5.1 
(622)/(622) 5.7 to 5.14 ,eijkt =(-I)z + I Ci~jek~t = i 

cubic/tetrag i . ~ + i  
(432)/(422) 5.1 to 5.6 + ~ = 3 ¢i~j~k¢( =(- ) jk~ 

cubic/ortho 

(432)/(222) 5.1 to 5.6 

cubic/hexag 5.1 to 5.7, 5.9, 

(432)/(622) 5.15 to 5.24 

Cijk~ = ( - t )  i ; ic; j tk~.£ = l 

4.2. Permutation rule 

The permutation rule is sometimes simple. For 
instance, if 

i + l = 3, (5) 

the allowed permutations are 

(ao,al,a2,a3), (aa,al,a2,ao), (al,ao,a3,a2), (a2,ao,a3,al), 

(ao,a2,al,a3), (a3,a2,al,ao), (al,a3,ao,a2), (a2,a3,ao,al). 

In some cases, the permutation rule is expressed by 
using a parameter eijkt for which the whole set of 
possible subscripts (i,j,k,l) is defined by circular per- 
mutations from (0,1,2,3) or (0,3,2,1). In the former 
case euk t = + 1, in the latter case eUki = --1 (see Fig. 3). 
For instance, the permutation rule 

etjkt = (-- 1) l+ ] (6) 

allows four permutations: 

(ao,al,aE,a3); (aE,a3,ao,al); 

(al,ao,a3,a2); (aa,a2,al,ao). 
4.3. Sign rule 

For each permutation of (ao,al,aE,aa), the final sub- 
scripts i, j ,  k, l in (4) are known. The allowed values for 
ei, e j, e k, e t are now determined either by (Table 4) 

e i ej C k e I ---- 1 (7) 

or by an expression depending on a parameter eij k. This 
parameter is equal to + 1 according to a positive or 
negative reading sequence of the subscripts/jk around 
the circle in Fig. 3, with i, j ,  k equal to 0, 1, 2 or 3. 
Observation of the sign rules in Table 4 indicates that 
three out of four values of e are independent. 

Choosing ei a t _> 0, the sign of the rotation angle 0 is 
determined from (3) and (4) by 

also 

sign(e tat) if a ia t 4=0, 

s ign(eja j )  if a t = 0 ,  a t4:0 ,  a j : / :0,  

sign(e ka k) if a t = 0 ,  a j = 0 ,  a i4:0,  

0 = z t  if a i = 0 .  

(8) 

' + , 

2 

- 1  

Fig. 3. The variables ejkt and eUk t are equal to _+ 1 according to the 
reading sequence of the indicesjkl or ijkl around the circle. 
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4.4. Stereographic standard triangle (SST)  and dis- 
orientation. Example 

Combining the general definition of disorientation 
given in § 2 and the results of Table 4 allows, for each 
of  the six examples treated, the determination of: 

(i) the area of  the stereographic projection inside 
which the disorientation axis [a,fl, y] is defined. This 
area defines in turn a stereographic standard triangle 
referred to the frame F1 (Fig. 4a,b,c,d); 

(ii) some inequalities, denoted 'disorientation ine- 
qualities' in Table 5, subdivided into two sets. These 
two sets are differentiated by the presence of a sign + 
or - before a~, a2, a a. Here, a 0 is taken to be positive. 
The interest of these inequalities is that if a quaternion 
(ao,a~,a2,ao) completely verifies one of these two sets, it 
is the disorientation quaternion; 

(iii) the upper limits of I Od I corresponding to a 
rotation axis lying in the SST. These limits, determined 
by each disorientation inequality, apply in definite 
domains of the SST, denoted I, II, III, IV, V in Table 5. 
Fig. 4(a), (b), (c), (d) shows the boundaries of each 
domain. The poles A, B, C, D, E, F, G, related to 
cubic/hexagonal lattices, correspond to the irrational 
directions: A[u,O,v]; B[u, v(1 + v/2), v]; C[v(x/'2 - 1), 
u, v]; D[0,u,v]; E[u,vv/2,0]; F[1/v/2,1/v/2,0];  
G[vv/2,u,O]; where u = (v/2 - 1)(v/3 - 1) and v = 2v/2 
-- v /3- -  1. 

As an example, the case cubic (432)/tetragonal 
(422) is now briefly presented. Let us now write the 
quaternions equivalent to the quaternion (ao,a~,aE,aa) , 
each having a 0 > 0 as first term. From the permutation 
and sign rules, they are: (ao,a,,a2,a3); (ao,-a~,-aE,a3); 

Table 5. Inequalities related to disorientation: limits of  the disorientation angle versus the direction cosines 
[a,fl, y] of the disorientation axis 

l a t t i c e - - I / l a t t i c e  2 

cubic 1/cubic 2 I 

(432) /(432) II 

t e t r a . i / t e t r a . 2  

(422)1(422) 

hexa.1/hexa. 2 
(622)/(622) 

cubic / t e t ra  

(432)/(422) 

cubic/ortho. 

(432)/(222) 

cubic/hexag. 

(432)/(622) 

I 

I/ 

I l l  

I 

I/ 

I l l  

I 

I /  

I l l  

disorientat ion inequal i t ies 

a o ~  2 -112 (a o± a I) 

- i  
a o ) 2 (ao~al±a2±a3) 

a o ~ ± a I 

a o ~  2 "I/2 (a ° ± a 3) 

a o ~ 2 -I12 (± a I ± a 2) 

a o ~ ± a I 

a o ~ 2 -I  (a o d3 ~ a3) 

a o ) 2 -I (±a I /3 z a2) 

a o ~ 2 - I / 2  (a ° ~ a 1) 

a o )  2 - I  (aot a l±  a 2~ a 3) 

a o ) 2 - I / 2  (a ° ± a3) 

a o ~ 2 -1/2 (a ° ~ a I) 

a o ~  2 -I  (a u~ a Iz a 2± a 3) 

upper l i m i t  o f  I tg  (Od/2)l 

(i~ - I ) I~  

l l (a + B + y) 

116 

21(6 + B) 

(/2 - 1 ) /y  

lI6 

(2 - ~ ) I y  

21(6v~ + 6) 

(v~-  1)/~ 

1/(~ +6 + y ) 

( / 7 -  1)/y 

( v~-  1)I~ 

1!(~ + B ~ y) 

I l l  

IV 

I 

II 

I l l  

IV 

V 

a o )  2 -1/2 (a ° ~ a 3) 

a o )  2 -1/2 (a ° ± a 2) 

a o ~ 2 - I / 2  (a o ± a I )  

a o )  2 -I12 (a o ± a 2) 

a 0 • 2 I12 (p a 0 ± q a 3) 

a o ~ p(a~ a2 )±q (a  l + a 3 )  

a o ) P(a o~a  I)  ~q(a 2 - a 3 )  

/ 2 -  1)/y 

/ 2 - -  1)/B 

v~-  1)16 

i 2 -  I)/6 

(2/2-  / ] - I ) I ( / 3  - 1)y 

(3-/3)~(v~-1)(~+~)+B(/3+1)1 

(3+/3)A(~-I)(B-¥)+~(v~+I)j 

maxi.disor. 

(1,1, ,F2-1) 

lOdl : 62.80 ° 

(1, v~-1,f2- i) 

[Odi : 98.42 o 

(l,2-/J, 2-/~) 

IOdl : 93.84 ° 

(I,1, / 2 -  l )or  

( i , /2 - i ,  I) 

led] : 62.80 ° 

(I,I,vF2 --i) or 

1,V~-l, i) or 

/ ~ -  I ,  i , i )  

%1 : 62-80° 

( l + v ~ - f 2 -  d3 r, 

3-v~+ / 2 -  /~, 

-1 - V3+  2d~) 

led! : 56.60 ° 
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(ao,al,--a2,--a3); (ao,--al,a2,--aa); (ao,a2,al,a3); 
(ao , -az , -a  1,a3); (ao,az,-al,-a3); (a0,-a2,a 1,-a3). By 
using a stereographic projection it can be easily shown 
that one and only one of the eight above quaternions 
has a related rotation axis [a,fl,~,] such that y >_ 0 and a 
___ fl ___ 0, the rotation angle 0 being positive or negative. 
If the term a 0 of this latter quaternion hereafter 
supposed to be (ao,ax,az,a3) is greater than all the terms 
of typical expressions (5.1) to (5.6), Table 2, it is 
deduced that this quaternion describes disorientation 
according to the definition of § 2. These latter con- 
ditions are expressed by the disorientation inequalities, 

010. 010-- 
4 5 0 ~ 7  4 5 ° ~  

. ~ _ _ . . _  ,v ~5474o 
2° 46.980 47.31 ° ~ / %  

,~- ,.1.1 _..__:.,.~ \ 

07o01  !5o ' \ . . . .  t t ° 

001l AI ]100 00, 1 ]145° 15o* t ------~ 45 o 
45°- '01 46.98 ° 

60.72 ° 
(a) (b) 

10 9o~,,, 
v~ ,o 1.L2 - v~_// - 

3, V/3,:,V~. 99 ~ , . / ~ "  1 /  9 4 . ~ '  ~4V..~ ',0 
/" * '" 5"'- : , 0  ,- , / 

',2"- V/3, 2- ~"3~/"~91.99 o . 2 "¢~- - 
0 0 1 ~  'I 93'84°11 t 00 ' '  V~928 "42c 
300~ '' i : i 45e~/" 

',0,2- V~ 1100 ',0,~/2- '00 
(C) 91"99° 900 (d) 94.53 900 

Fig. 4. Standard stereographic triangles with domains of maximum 
disorientation angles 10dl. (a)cubic 1/cubic 2 [100, I I0, 1111, 
cubic/tetragonal: [ 100, 110, 001 ], cubic/orthorhombic [ 100, 010, 
001], (b) cubic/hexagonal, (c) hexagonal 1/hexagonal 2, (d) 
tetragonal 1/tetragonal 2. Equal angular spacings are slashed / or 
//. 

Table 5. The sign + or -- in these inequalities depends 
only on the sign of 0 a, positive or negative. When one 
inequality becomes strictly an equality, it defines the 
limits of I Odl. I Odl maximal is found on the limits of 
domains I, II, III. 
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Abstract 

The controversial space-group problem of spinel, 
MgAI20 4, whether it is Fd3m or F43m, was studied by 
electron diffraction. It was confirmed that the ap- 

0567-7394/80/010122-05501.00 

pearance of 'forbidden reflections' such as /200} was 
caused by the double reflection process of reflections 
with high indices on the non-zero-order Laue zone. 
Consequently, the space group of spinel is Fd3m, and 
the assignment of the space group to F43m is ruled out. 
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